Термопластические синтетические материалы и их применение для строительства бассейновСамо название "синтетический материал" говорит о том, что речь пойдет о материалах, изготовленных искусственно. В качестве исходного сырья применяется нефть, природный газ и уголь. Путем трансформации этих веществ получаются химические соединения, которые своей структурой и определяют специфические свойства материалов. СМ делятся на 3 группы: термопласты, дуропласты и эластомеры. В данной статье речь пойдет о термопластах и одной из областей их применения. Синтетические материалы, которые многократно после нагревания становятся мягкими вплоть до жидкого состояния, а после охлаждения опять приобретают прочность, называются термопластами. Они содержат линейные или разветвленные молекулярные цепи, которые, как правило, расположены беспорядочно или имеют определенную структуру. Величина физических сил между этими молекулами полностью определяет свойства и поведение термопластов. В связи с тем, что эти свойства зависят от температуры, свойства термопластов в решающей мере зависят от температуры применения. Термопласты делятся на 2 группы: * аморфные термопласты - их молекулы не упорядочены и не имеют внутренней структуры (структура комка ваты), при 20°С прочны, тверды и хрупки * частично кристаллизованные термопласты - в них наряду с аморфными участками содержатся участки, в которых молекулы расположены упорядоченно, они при комнатной температуре твердые и прочные Полипропилен образуется в результате полимеризации пропилена. Боковая метиловая группа СН3- может быть пространственно по-разному сориентирована (случайным образом или упорядоченно), что позволяет получать пропилен с разными свойствами. Если все группы СН3- находятся на одной стороне молекулярной цепи, полипропилен называется изотактическим. nCH2=CH2(CH3) -> [-CH2-CH2(CH3)-]n Частично кристаллизованный изотактический полипропилен представляет для нас в данном случае наибольший интерес, так как только у него высокая способность к кристаллизации влияет на релевантные технические свойства. Из тактического полипропилена получаются прочные жесткие термопласты с высокими температурами плавления и отличной устойчивостью к растворителям. Изотактический полипропилен - важный промышленный продукт. Он широко используется для получения волокон и пленок и как материал для литьевого и выдувного формования емкостей. В отличие от полиэтилена, полипропилен менее плотный (плотность 0,90 г/см3, что является наименьшим значением вообще для всех пластмасс), более твёрдый (стоек к истиранию), более термостойкий (начинает размягчаться при 140°C, температура плавления 175°C), почти не подвергается коррозионному растрескиванию. Обладает высокой чувствительностью к свету и кислороду, которую можно понизить введением стабилизаторов. Таблица 1. Физико-механические свойства полипропилена Плотность, г/см3 0,90-0,91 Разрушающее напряжение при растяжении, кгс/см2 250 - 400 Относительное удлинение при разрыве, % 200 - 800 Модуль упругости при изгибе, кгс/см2 6700 - 11900 Предел текучести при растяжении, кгс/см2 250 - 350 Относительно удлинение при пределе текучести, % 10 - 20 Ударная вязкость с надрезом, кгс·см/см2 33 - 80 Твердость по Бринеллю, кгс/мм2 6,0 - 6,5 Полипропилен вследствие своей неполярной структуры является химически стойким материалом. Заметное воздействие на него оказывают только сильные окислители. Полипропилен - водостойкий материал. Даже после длительного контакта с водой в течение 6 месяцев (при комнатной температуре) водопоглощение полипропилена составляет менее 0,5%. Чистый изотактический полипропилен плавиться при 176°С. Максимальная температура эксплуатации полипропилена 120-140°С. Все изделия из полипропилена выдерживают кипячение, и могут подвергаться стерилизации паром без какого-либо изменения их формы или механических свойств. Температура хрупкости полипропилена колеблется от -5 до -15°С. Морозостойкость можно повысить введением в макромолекулу изотактического полипропилена звеньев этилена (например, при сополимеризации пропилена с этиленом). Полипропилен, подобно большинству синтетических полимеров, является прекрасным диэлектриком. Благодаря ничтожному водопоглощению его электроизоляционные свойства практически не изменяются даже после длительной выдержки в воде.
Новости светотехники |